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A space made up of two different kinds of elastic half-spaces with a coaxial system of circular and annual gaps at the interface 
is considered. Loads, which are solely dependent on a radial coordinate, are specified at the edges of the gaps. A representation 
of its general solution in terms of generalized analytic functions is used to solve this problem in the theory of elasticity. A singular 
integral equation is obt~fined after satisfying the boundary conditions at the gaps and carrying out a number of calculations. This 
equation is subsequent]~ reduced to a Fredholm equation by an exact inversion of the characteristic part. A dosed solution is 
obtained in the case of a single circular gap. © 1996 Elsevier Science Ltd. All rights reserved. 

The reduction of problems in the plane theory of  elasticity for bodies with cracks to a problem of the 
matching of complex analytic functions on the crack boundaries and then reducing them to integral 
equations is an effcctive method for solving them. In spatial, axisymmetric problems in the theory of 
elasticity in the case of a plane boundary it is also possible in a number of cases to reduce them to 
matching problems and, then, to integral equations using p-analytic functions. Some mixed problems 
in the theory of ela,;ticity have been solved using this method in the axisymmetric case for a half-space, 
a space with coaxial circular gaps, etc. [1--4]. Some similar problems were solved in [1] by reducing them 
to a matching problem for analytic functions. The use of generalized analytic functions in this kind of 
problem is also effective and, in particular, in the case of an elastic space composed of  two different 
half-spaces when there are annular slots in the plane of  separation, with which this paper is concerned. 

Let the elastic characteristics of the material in the case of each of  the two half-spaces be different 
and equal respectively to G1, vx and G2, v2, where Gj is the shear modulus and vj is Poisson's ratio 
(j = 1, 2). Assuming that there is ideal contact everywhere along the plane of the interface of the half- 
spaces z < 0, 0 < r < 0o and z > 0, 0 < r < 00 (z and r are cylindrical coordinates), apart from the 
domains which correspond to the gaps, and that the loads on the boundaries of  the gaps are specified, 
we can write the boundary conditions on the boundaries of the gaps, using generalized analytic functions, 
in the form [1] 

. k ( t  ) _  Wk(t ) = f k ( t  ) _ O~k) . ._tk) -i-lXzr (1) 

L= ~.Lk; L~--->(z=O,a k <]rl<bk);k=O,1 ..... n 
k=O 

The matching conditions on the common boundary of  the half-spaces, that is, equality of the loads 
and, also, the displacements uz (k) and ur (k) are 

*t (t)- WI (i) = *2 (t) - V 2 (t) (2) 

( × l t P l ( t ) - ~ t l ( t ) ) l G  I = ( x 2 Q 2 ( t ) - ~ l l 2 ( t ) ) / G  2 ( z ~ L )  (3) 

where *k(t), Wk(t) are generalized analytic functions whenz < 0 (k = 1) andz > 0 (k = 2), respectively, 
tSz (k) and ts~ k) are the normal and shear stresses specified on the boundaries of the gaps, Uz (k) and u! k) 
are the displacements and Ok(t ) = 9'(t), Wk(t) = ~'k(t), rk = 3 -- 4Vk, an+l = ~- 
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In the case of generalized analytic functions, the operation of differentiation is defined as follows [1]: 

tp' ( t )  = l im (q~(q) - Re  tp(t) - i rr[  t Im tp(t))(z - z l  + i ( r  - r~ "'))-~ 
t I -) t  

( t = z + i r ,  ti = z l  +ir~) 

(4) 

The stresses and strains are determined in terms of generalized analytic functions using the formulae 

oz +t i t  +~e = 4(1 + v)Re~( t )  

tl e = 4v ReO(t) + 2 G u  r / r 

6 z +iXzr = ~ P ( t ) - 2 z O ' ( t ) -  ~F(t) 

2 G ( u  z + iur ) = ~ tp( t )  - 2ztp" ( t )  - W( t )  

(5) 

Assuming the derivatives of q~k(t).and yk(t) exist at the interface, differentiating (3) using formula 
(4), and allowing for the fact that (~0(t))' = --9'(0 when t = ir, instead of (3), we obtain 

( × l ~ t  ( t )  + W I ( t ) )  / G I = ( × 2 ~ 2  ( t )  + W 2 ( t ) )  / G 2 (6) 

We transform (2) and (6) to the form 

(1 + Z.x I )~l (t) - (1 - Z,)~FI (t) = (i + x2 )02 (t) 

(~2 - ~'lXl )till ( t )  - (X 2 + ~,)~lJl (t-) = ( |  + X2)~lJ2 ( t )  

Passing in the second of these to the conjugate values and then expressing them in terms of the 
remaining terms, we obtain 

(l + ~1  )(I)1 (t) = (l - ~,)~q.l! (t) + (l at- ~2 )02 (t) 

(×2 + ~,)W~ (t) = (×2 - ~,×l )~l (t) + (I + ×2)~'2 (t) 
(7) 

It follows from (7) that ~a(t) and tFl(t ) are analytically continuable into the domain z > 0 since the 
functions Ol(-t)  and Ol(-t) are generalized analytic functions when z > 0 as Ol(t) and ~l( t )  are 
generalized analytic functions when z < 0. 

From (7) we obtain 

~2( t )=  1+)o~ I ~ l ( t ) _  1-)~ 
1 + X 2 1 + ×2 ~ ( - t )  

~ 2  ( t )  = x2  + ~" q,j ( t )  + ~'xl - ×.__.___~2 0 l ( _ t )  (8) 
× 2 + 1  x 2 + l  

Taking account of the fact that ~(t) = cl,(t-) when t = ir, we can write condition (1) in the form 

~ k f t ) -  ~Fk(t ) = ~ ( t ) -  Wk(- t )  = 0(: k) + ix~=~r ) (k = 1,2) (9) 

Since t = z + ir ~ - 0  + ir when z ---> -0  and the variable ~ = - t  - ~  + 0  - Jr, the function tFk ( - t )  in (8) 
is the boundary value of tFk(~) on the boundary of the gap L+ when k = 1 and on the boundary of the 
gap L_ when k = 2 (~ = -t, t = lira (z + it) = +_0 + ir when z -> -0) .  On replacing t by - t ( t  = it) in 
(9) and adding the right-hand and left-hand sides of (9) and of the equality obtained by this replacement, 
we obtain 

• [ , ( t ) -  Wl+(t) = f l , ( t ) ,  ~ , ( t ) -  W{.(t) = f2.( t)  (t E L) (10) 
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where 

~P~.(t) = Opk(t)+dP~(-t), Wk.(t) = q~(t)+ W~(-t) 

f~.(t)=f~(t)+f~(-t) (k = 1,2) 

Now, using (8) and carrying out similar operation with them and then substituting the resulting 
expressions for ~2:*(t) and q~2.(t) into condition (10), we obtain 

O ;  (t) - q~+ (t) = ~ ,  (t)  (11) 

~+.(t)-(l+fJ)W.(t)+tX~;(t)-5~+(t)= f2.(t) ( t ~  L) 

• .(t) = ~l.(t), W.(t) = Wl,(t) 

cx= , 8 = ~ ;  I ~ = ~ x - ~  
l+k×~ l+kxt  

On multiplying the right- and left-hand sides of the first of equalities (11) by 1 + o~ and then subtracting 
the right- and left-hand sides of the second quality of (11) from the right- and left-hand sides of the 
resulting equality, we obtain 

[ ~ ,  (t)  + (1 + I3)W, (t)]  + - [ ~ ,  (t) + (1 + I3)W. ( t ) ] -  = 

= f2* (t) - (1 + ot)ft, (t) = F(t )  (12) 

Hence, we obtain a matching problem for the function f~(t) = ~.(t) + (1 + I])~F.(t) which has the 
simple solution [5] 

* *  (~) + (1 + I~)hu, (~) = F t (~) + A (13) 

whereA = 0 subject to the condition that ~.(~) = q~.(~) = 0 when I ~ [ ---> oo. The latter holds subject 
to the condition that the stresses at infinity are equal to zero [1]. W(~, x) is a generalized Cauchy kernel 
[1] which can be written in the form 

w(~, x) = co(r~,x) / (~ -  x) 

B(k)  "c - ~ (sgn(Im ~Im ~) > 0) 

(o(~,x)= X - ~ O k  
11~_--~1 ( o ) ( s g n ( l m ~ I m x ) < O )  

B(k) = K(k)-  O(k), D(k) = (K(k)-  E(k))/k 2 

Along the line z -'= 0, we have 

k=2-vl-~/(r+ x), k o=2~cr-xl(r-x) (t=z+ir, x=y+ ix )  

On substituting ~'.(~) from (13) into the first equality (11), we obtain 

~ + ( t ) + ~ ; ( t ) =  F,(t); ~'= I / ( l + l ~ ) .  F , ( t ) = f l , ( t ) + ~ l F j + ( t )  (14) 

where F+(t) is the limiting value ofF(t)  on L+, the upper boundary of the gaps. 
We know [1] that a function which is a generalized analytic function everywhere in a plane, apart 

from the line L, can be represented in the form of a Cauchy type integral 
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(15) 

and, from formula (15) using the Sokhotskii-Plemelj formula for the boundary value of Q-(t) and Q+(t), 
we have 

@W = +(pK)/2 + @(<I (16) 

Substituting the expressions for @t(t) and G(t) into condition (14), we obtain a singular equation 
for the function p(t) 

(17) 

Here 

K(t,~)=k*(t,~)/lz-r(” (18) 

The function k.(t, z) satisfies the Holder condition H(a) (a < 1) with respect to both variables [l]. 
According to the general theory of singular integral equations [2], the characteristic equation 

for Eq. (17), in the case being considered here, has the following solution which vanishes at 
infinity 

211 
X(t)= (19) 

when there is a circular gap (aa = 0). When there is no circular gap, the last factor in (19) changes to 
unity. The index of the characteristic equationp is equal to 2n + 1 when there is a gap and 2n + 2 
when there is no gap and E = ln v/(p2rc). 

Expressions of the type (19) should be understood as branches which are holomorphic in the plane 
t = z + ir cut along the arc L and fixed, for example, in L. 

We will denote the operator [l] 

ZVO) K*F=A*(r,)F(t,)-B*(t,)-1 
F( t)dz 

Ki L Z(f)(f 1 to) 

A*(r,)=!$, l+Y B’(?,)=-- 
2Y 

by K*. 
According to the theory of singular integral equations [6], Eq. (17) (subject to condition (18)) is 

equivalent to the Fredholm equation 

cp*(to)+ K*K(p*(tO)= f*(to) (fo E L) 

f*(ro)= K*F,(t,)+Q,,_,(ro)~*cr,)z(t,> (20) 

where Q,,_,(ro) is an arbitrary polynomial of degree not higher than (p - 1). The conditions of the single- 
valuedness of the displacements have to be used in order to find the unknown coefficients of the 
polynomial Q+(t). These conditions consist of the fact that the expression Y(t) which is defined by the 
formula 
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Y(t) = Xk~k, ( t ) -  t~k . ( t ) -  Wk* (t) I (2Gt,) 

{~when  z<O 

k = when z > 0 

must return to its initial value when the point t describes closed contours A k which encompass the 
segments L k = akbk. 

On contracting the contours Ak to the segments, we see that the conditions of single-valuedness reduce 
to equalities 

(Xl tl)/* ('[) + Vl +* ('[))GI "ld~ + I (~2t1)2 "* ('[) + Ilia', (.c))G21dx = 0 (21) 

(k = 0,1,2,3 ..... n) 

where O~.(x) and ~ . ( x )  are determined using formulae which follow from formulae (7) 

• 2.(x)= l+Z'×w tl,~.(x)- 1-~, 'l'~-.(x) 
l + x  2 I + x  2 

l + x  2 1 + ~  2 

(22) 

In formulae (22), it is sufficient to take account of  the contours Lk lying in the fight-hand half of  the 
complex plane r > 0 since the coefficients of  the polynomial Qt,--l(X) are real. 

When there is a circular gap, it is also necessary to take account of  its contour L0. 
When formulae (11) and the Sokhotskii-Plemelj formulae for the functions ~l . (x)  and ~FI.(x ) are 

taken into consideration and the expressions for tb+2.(x) and ~Ir2.(x) from (22) are substituted into 
condition (21), we obtain a system of linear algebraic equations for finding the coefficients of the 
polynomial. 

This system is always solvable. 
In fact, the homogeneous system which is obtained in the case whenf*(t0) = 0 does not have a solution 

apart from Co = C1 = . . .  = C2n = 0 (Co = C1 = . . .  = C2~+I = 0) or the initial problem has only the  
trivial solution ~.(I:) = ~F.(x) = 0 and this means, as follows from the Sokhotskii-Plemelj formulae 
(16), 4,.(x) = 0 that the assertion is proved (Ck are the coefficients of the polynomial Qe_l('c) (k = O, 
1 , . . . ,  2,, (2,, + 1)). 

The antisymmetr~ic problem for the functions Ok..(X ) = tbk(X ) - Ok(--x), LFk..(X ) = ~Fk(X ) - ~Fk(--x ) is 
solved in exactly the same way. In order to determine the displacements and stresses, it is necessary 
still to find tpk(t) and yk(t) by integration. 

Since it is assumed that the displacements vanish at infinity, it is possible to take to = --** + iro when 
k = 1 and to = +00 + iro when k = 2. Then, from the definition of integration of  generalized analytic 
functions [11, we obtain 

,=..+i,~j t==+i~ f I when z < 0 
• k(t)= f %(x)dz.  ~/k(t)= f 't'~(x)dz, k= 

,o to [2 when z > 0 

It is seen that the conditions for the displacements to vanish at infinity are satisfied. After this, the 
displacements uz and Ur are calculated using the last of formulae (5) and the stresses are found using 
the first three equations of  (5). 

When there is only a single circular gap, the solution of the problem can be obtained in closed 
form immediately from the matching problem (12). In the plane with an aperture, which intersects 
the z axis and is symmetric with respect to it (in the case under consideration, L+ and L_, the 
upper and lower edges of the gap respectively, serve as the boundary of the opening), the generalized 
analytic function tb.(t) outside the opening and which vanishes at infinity can be represented in the 
form [1] 
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2 ,  :-~;-s7_, o. ( t )  = s((po(~)) - ,q ; -  i] l,%(~) d;  (23) 

where q)0(~) is a function which is holomorphic everywhere in the plane, apart from L, and we shall 
also assume that the line of branching of the radical coincides with the lower boundary and that the 
line of integration passes below L_ or above L ÷. The magnitude of the integral in (23) is then independent 
of the path of integration, subject to the condition that lim ~(P0(~) = 0 when I ~ I ---) o. and the integration 
is carried out subject to the condition lim O.(t) = 0 when I t I ~ *~. On integrating in (23) along the 
upper and lower edges of the gaps, respectively, we obtain 

2 iq)~(~).f~-i d~=S((Po(;)) 
• ±(t)= nl,-tl ,  7 ; - ,  

As before, we have 

'e+(t) = s(v~(~)) 
or, as follows from (13) 

& ~l;-~l (~o(;) ~,o(;)) ,~=a(,) (teL) (24) 

On applying the operator S -1, which is the inverse of S [1] on the line z = 0 to both sides of (24), we 
obtain a matching problem for the holomorphic function ~(~)  

"1~ (~) + cp~ (~) = S-I ( F. (t)) = f (~ )  (~ 6 L) (25) 
Under the assumption that f( 0 satisfies the HOlder condition when I ~ I ~< b0 and that lim ~ ( ~ )  = 

lira ~0(~)  = 0 when I ~ I ~ **, we write the solution of problem (25) as follows [5] 

~Po(~) = ( I + ~ ) X ( ~ )  I f(o)d(~ 
2~i L X ~ )  + X(~)PI (~) 

(26) 

where by X(t) we mean the values taken by the function 

X(t) = (t - b o ) - ~ - a  (t + bo )-~+a 

on the upper boundary L+, X =-In(1 + [3)1(2g) and PI(~) = C1~ + (72, C1, C2 are unknown constants. 
Since lim ~(P0(~) = 0 when I ~ I ~ ~ we have C1 = C2 = 0. 
Now, on applying the operator S to both sides of (26) we obtain 

s(o),o ]: z_ 
O.(t) = t, ~ 'LX(a)((~-~)) nt- t lL ~l~-t (27) 

The function W.(t) is found from (13) if relation (27) is used. The functions tb,.(t) and W..(t) are 
found in a similar way. 

This research was carried out with financial support from the International Science Foundation 
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